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The insidious and lethal nature of cancer,
associated with its unique characteristics of
dedifferentiation and loss of specialist func-
tion, invasion, and metastasis, is the result
of changes in the chemical nature and
structure of the proteoglycans of the cell
glycocalyx and lysosomal enzymes, result-
ing from alterations in the highly specific
glycosylations of the glycosyl transferases of
the endoplasmic reticulum (1-3). These
changes in cell proteoglycans, among the
earliest changes seen in malignancy and
used for histological diagnoses of premalig-
nant states (4), are not only highly charac-
teristic of the disease but also contribute
progressively to the full establishment of
malignancy. Changes occur in the glycoca-
lyx, resulting in loss of cell adhesion (5) or
in open intercellular tight junctions,
enabling toxic chemicals and reactive inter-
mediates to reach the critical basal cells of
epithelia. These changes may evoke perma-
nent DNA damage, resulting in a malig-
nant cell clone. Changes in cell adhesion
result in metastasis (3,6), and changes in
the proteoglycan hydrolases are associated
with tissue invasion (7,8). It is not insignif-
icant that these earliest changes in glycosyl
transferase activities and proteoglycan syn-
thesis occur in the endoplasmic reticulum,
the major site of metabolite activation of
chemical carcinogens and of the generation
of reactive oxygen species (ROS) from the
futile cycling of the microsomal cyto-
chromes. Furthermore, the endoplasmic
reticulum is believed to contain its own
DNA.

The categorization of cancer develop-
ment into the phases of initiation, promo-
tion, progression, and development is an
oversimplistic approach, since cancer, like
aging, is a process of continuous and pro-
gressive DNA degeneration (9,10) result-
ing from inherited impairment of DNA
protection, repair, and regulation, DNA
damage from ROS as in aging, and alkyla-
tion, arylation, and acylation of DNA by
chemical carcinogens. These processes
result in errors in transcription, leading to
mutations and activation of proto-onco-
genes (11), which are considered to be
genotoxic mechanisms, and also lead to
altered regulation of DNA transcription,

repair, and replication, often considered to
be nongenotoxic. Consequently, cancer is
probably the result of several different fac-
tors including inherited tendencies, aging,
dietary deficiency in ROS scavengers and
antioxidants, and exposure to toxic envi-
ronmental chemicals. Putting aside inherit-
ed factors, which though most important
cannot readily be changed, the major
causative factors in cancer would appear to
be ROS associated with the aging process,
oxidative stress, degenerative disease, and
chemical carcinogens.

Chemical carcinogenesis has long been
associated with planar molecules, which
may intercalate with DNA; with oxidative
activation of the carcinogens by cyto-
chromes P450 to reactive intermediates,
which are electrophilic and bind covalently
to DNA, thus damaging the genetic mater-
ial and activating oncogenes; with the pro-
duction of ROS, which may directly dam-
age the DNA or activate carcinogens to
reactive intermediates; and with activation
of the protein kinase C cascade, leading to
the phosphorylation of key nuclear pro-
teins (transcription factors) involved in the
regulation of DNA replication, changes in
the epidermal growth factor, immunosup-
pression, dedifferentiation and hyperplasia
(12,13). The activation of chemical car-
cinogens to reactive intermediates (ultimate
carcinogens) is catalyzed primarily by
cytochrome P4501 (CYPI) (14,15), which
selectively accepts planar molecules (car-
cinogens) as substrates (16); oxygenates
them in conformationally hindered posi-
tions, thus forming highly reactive epox-
ides, which, however, are not easily detoxi-
fied by epoxide hydrolase, glutathione
transferase, and other detoxification
enzymes (16); and is regulated by a cytoso-
lic (steroidlike) receptor, the Ah receptor,
which binds some carcinogens and other
planar molecules to induce increased pro-
duction of CYP1, Ah receptor protein, and
other enzymes by genomal depression and
also activates the protein kinase C cascade
(14). Although the majority of known car-
cinogenic chemicals are believed to be
metabolically activated by CYP1, the
nitrosamines and other small molecules are
activated by cytochrome P4502E1 (17).
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Other mechanisms, including the action of
prostaglandin synthetase (18), myeloperox-
idase, and ROS-mediated oxygenations, are
known to be equally effective in carcino-
gen activation. However, the unique piv-
otal role of CYP1 in chemical carcinogene-
sis is due to its coordination with the regu-
latory Ah receptor, resulting in the normal,
low, non-injurious tissue levels of CYP1
being greatly augmented (1000-fold or
more) by enzyme induction (19). More-
over, this enhanced metabolic activation of
carcinogens by CYP1 to damage the DNA
coincides with the activation of protein
kinase C to augment DNA replication and
evoke hyperplasia, thus ensuring that the
faulty genetic information is preserved and
perpetuated in a clone of DNA-damaged
cells.

ROS can similarly damage DNA (20)
and may also result in activation of protein
kinase C, oncogene activation, and multi-
stage carcinogenesis (21). ROS are gener-
ated continuously in biological systems by
the low efficiency in the conversion of
chemical energy into work, the associated
electron leakage from membranes, and the
consequent reduction of 02 to superoxy
anion and other ROS. As ROS generation
depends on tissue 02 uptake, and this is
high in small animal species, the sponta-
neous formation of ROS is greatest in
small rodents (22). Furthermore, biologi-
cal systems have an antioxidant defense
system to prevent ROS leading to oxida-
tive stress, tissue damage, and mutations,
and this is critically dependent on tissue
glutathione concentrations. While small
rodents, especially mice, consume tissue
glutathione in chemical detoxification,
humans and larger animals more expedi-
ently use water and epoxide hydrolase to
detoxify carcinogenic epoxides, with the
overall consequence that rats and mice are
much more susceptible to the toxic effects
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of ROS, thereby exhibiting much higher
levels of spontaneous cancer and much
shorter life-spans than man and other large
animals (23). Production of ROS may be
greatly increased by futile cycling of the
microsomal cytochromes P450; even phe-
nobarbitone, which is regarded as a non-
carcinogen and is metabolized by CYP2B,
results in considerable ROS production,
which can potentiate the malignancy of
known carcinogens (e.g., dimethylni-
trosamine).

The extreme case of P450 futile cycling
is seen with cytochrome P4502E1
(CYP2E1), an enzyme which is believed to
result in the oxygenation of difficult-to-
oxidize substrates (e.g., ethanol) by gener-
ating ROS in the vicinity of the substrate
(24,25). Enhancement of CYP2E1 activity
(by substrate-induced stabilization of the
enzyme, not enzyme induction) leads to a
prolonged burst of ROS production that
can result in tissue necrosis, mutations,
malignancy, organ failure, and death.
Numerous chemicals are known to
enhance CYP2E1 activity [e.g., ethanol,
acetone, halothane, and many other small
halogenated chemicals (26)] and hence to
provoke ROS generation with consequent
toxicity and carcinogenicity in small
rodents. Indeed, inspection has revealed
that those chemicals that cause cancer in
rodents, especially mice, but not in larger
species, are mostly substrates of CYP2E1.
For the reasons given, these chemicals are
unlikely to result in oxidative stress in
humans and larger animals species, and are
therefore unlikely to constitute as serious a
carcinogenic hazard as substrates of CYP1.

By using molecular parameters (molec-
ular planarity, collision diameters, frontier
orbital energies) that discriminate sub-
strates of CYPI and CYP2E1 from each
other and from those of other cyto-
chromes, a novel procedure (COMPACT)
has been developed to detect potential
genotoxic carcinogens (CYP1 substrates)
and rodent carcinogens (CYP2E1)
(22,27,28). The lack of concordance
between the Ames test for mutagens
(which detects mostly CYPI substrates)
and the rodent two-species assay (which
identifies both CYPI and CYP2E1 sub-
strates) is thus explained. Apart from this
development in cancer detection and pre-
vention, the understanding of the multifac-
torial mechanisms of chemical carcinogen-
esis has facilitated new preventive measures
and treatments, including inhibition of
CYPI (29,30), enhanced detoxification of
ROS (31,32), and dietary supplementation
with antioxidant nutrients (31,33,34).

REFERENCES

1. Hakomori SI. Aberrant glycosylation in cancer
cell membranes as focused on glycolipids:
overview and perspectives. Cancer Res
45:2405-2414 (1985).

2. lozzo RV. Biology of disease. Proteoglycans:
structure, function and role in neoplasia. Lab
Invest 53:373-396 (1985).

3. Saitoh 0, Wong WC, Lotan R, Fukuda M.
Differential glycosylation and cell surface
expression of lysosomal membrane glycopro-
teins in sublines of a human colon cancer
exhibiting distinct metastatic potentials. J Biol
Chem 267:5700-5711 (1992).

4. Tsiftsis D, Jass JR, Filipe MI, Wastell C.
Altered patterns of mucin secretion in precan-
cerous lesions induced in the glandular part of
the rat stomach by the carcinogen, N-methyl-
N'-nitro-N-nitrosoguanidine. Invest Cell
Pathol 3:399-408 (1980).

5. McCarthy JB, Basara ML, Palm SL, Sas DF,
Furcht LT. The role of cell adhesion pro-
teins-laminin and fibronectin-in the move-
ment of malignant and metastatic cells. Cancer
Metastasis Rev 4:125-152 (1985).

6. Stanford DR, Starkey JR, Magnuson JA. The
role of tumour-cell surface carbohydrate in
experimental metastasis. Int J Cancer 37:
435-444 (1986).

7. Bernacki RJ, Niedbala MJ, Korytnyk W.
Glycosidases in cancer and invasion. Cancer
Metastasis Rev 4:81-101 (1985).

8. Bolscher JGM, Schallier DCC, Smets LA, van
Rooy H, Collard JG, Bruyneel EA, Mareel
MMK. Effect of cancer-related and drug-
induced alterations in surface carbohydrates on
their invasive capacity of mouse and rat cells.
Cancer Res 46:4080-4086 (1986).

9. Ames BN, Gold LS. Endogenous mutagens
and the causes of aging and cancer. Mutat Res
250:3-16 (1991).

10. Sugimura T. Multistep carcinogenesis: a 1992
perspective. Science 258:603-607 (1992).

11. Spandidos DA. Mechanisms of carcinogenesis:
the role of oncogenes, transcriptional enhancers
and growth factors. Anticancer Res 5:485-498
(1985).

12. O'Brian CA, Ward NE. Biology of the protein
kinase C family. Cancer Metastasis Rev
8:199-214 (1989).

13. Meek DW, Street AJ. Nuclear protein phos-
phorylation and growth control. Biochem J
287:1-15 (1992).

14. Guengerich FP. Metabolic activation of car-
cinogens. Pharmacol Ther 54:17-61 (1992).

15. Guengerich FP. Human cytochrome P-450
enzymes. Life Sci 50:1471-1478 (1992).

16. Lewis DFV, Ioannides C, Parke DV. Mo-
lecular dimensions of the substrate binding site
of cytochrome P-448. Biochem Pharmacol
35:2179-2185 (1986).

17. Yamazaki H, Oda Y, Funae Y, Imaoka S, Inui
Y, Guengerich FP, Shimada T. Participation of
rat liver cytochrome P4502E1 in the activation
of N-nitrosodimethylamine and N-nitrosodi-
ethylamine to products genotoxic in an acetyl-
transferase-overexpressing Salmonella
typhimurium strain (NM 2009). Carcino-
genesis 13:979-985 (1992).

18. Smith BJ, Curtis JF, Eling TE. Bioactivation of
xenobiotics by prostaglandin H synthase.
Chem Biol Interact 79:245-264 (1991).

19. Ioannides C, Parke DV. Induction of cyto-
chrome P4501 as an indicator of potential

chemical carcinogenesis. Drug Metab Rev
25:485-501 (1993).

20. Epe B. Genotoxicity of singlet oxygen. Chem
Biol Interact 80: 239-260 (1991).

21. Witz G. Active oxygen species as factors in
multistage carcinogenesis. Proc Soc Exp Biol
Med 198:675-682 (1991).

22. Parke DV, Ioannides C, Lewis DFV. The role
of the cytochromes P450 in the detoxication
and activation of drugs and other chemicals.
Can J Physiol Pharmacol 69:537-549 (1991).

23. Parke DV, Ioannides C. Role of cytochromes
P450 in mouse liver tumour production. In:
Mouse liver carcinogenesis: mechanisms and
species comparisons (Stevenson DE, McClain
RM, Popp JA, Slaga JA, Ward JM, Pitot HC,
eds). New York:Alan R. Liss, 1990;215-230.

24. Ekstrom G, Ingelman-Sundberg M. Rat liver
microsomal NADPH-supported oxidase activi-
ty and lipid peroxidation dependent on ethanol
inducible cytochrome P-450. Biochem
Pharmacol 38:1313-1319 (1989).

25. Kukielka E, Cederbaum AI. The effect of
chronic ethanol consumption on NADH- and
NADPH-dependent generation of reactive oxy-
gen intermediates by isolated rat liver nuclei.
Alcohol Alcoholism 27:233-239 (1992).

26. Guengerich FP, Kim D-H, Iwasaki M. Role of
human cytochrome P-450IIE1 in the oxidation
of many low molecular weight cancer suspects.
Chem Res Toxicol 4:168-179 (1991).

27. Lewis DFV, loannides C, Parke DV. A
prospective toxicity evaluation (COMPACT)
on 40 chemicals currently being tested by the
National Toxicology Program. Mutagenesis
5:433-435 (1990).

28. Lewis DFV, Ioannides C, Parke DV. Vali-
dation of a novel molecular orbital approach
(COMPACT) for the prospective safety evalua-
tion of chemicals, by comparison with rodent
carcinogenicity and Salmonella mutagenicity
data evaluated by the U.S. NCI/NTP. Mutat
Res 291:61-77 (1993).

29. Ioannides C, Ayrton AD, Lewis DFV, Walker
R. Modulation of cytochrome P450 and chem-
ical toxicity by food. In: Food, nutrition and
chemical toxicity (Parke DV, Ioannides C,
Walker R, eds). London:Smith-Gordon,
1993;301-310.

30. Lewis DFV, Lake BG, Ioannides C, Parke DV.
Inhibition of rat hepatic aryl hydrocarbon
hydroxylase activity by a series of 7-hydroxy
coumarins: QSAR studies. Xenobiotica 24 (in
press).

31. Parke DV: The importance of diet and nutri-
tion in the detoxication of chemicals. In: Food,
nutrition and chemical toxicity (Parke DV,
Ioannides C, Walker R, eds). London:Smith-
Gordon, 1993;1-16.

32. Sundquist AR, Stahl W, Sies H. The roles of
tocopherols and carotenoids in biological
defence against oxygen radicals. In: Food,
nutrition and chemical toxicity (Parke DV,
Ioannides C, Walker R, eds). London:Smith-
Gordon, 1993;139-146.

33. Benner SE, Lippman SM, Hong WK.
Retinoids in the prevention and treatment of
cancer. In: Food, nutrition and chemical toxici-
ty (Parke DV, Ioannides C, Walker R, eds).
London:Smith-Gordon, 1993;371-384.

34. Garewal H. Unlike the retinoids, {-carotene
and vitamin E, are effective chemopreventive
agents of oral cancer. Eur J Cancer Prevent
3:101-107 (1994).

Volume 102, Number 10, October 1994 853


